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Objective: To investigate the effect of moderate changes in dietary fatty acid profile on postprandial risk factors for
cardiovascular disease (CVD).
Design: Double-blind, randomised, crossover, intervention trial.
Setting: University of Auckland Human Nutrition Unit, New Zealand.
Subjects: A total of 18 lean healthy men.
Intervention: A dairy butter fat modified to reduce the saturated:unsaturated fatty acid ratio and a conventional high saturated
butter fat were given on two separate occasions as a high-fat test meal (5974 g fat; 71 en% fat) at breakfast. A fat exclusion
lunch, dinner and snacks were also given. Blood samples were collected at 0 (baseline), 1, 3, 6, 10 and 24 h.
Results: Maximum peak in total triacylglycerol (TAG) occurred 3 h postprandially and was highest on modified treatment (diet,
Po0.05) due predominantly to increased TAG within the chylomicron-rich fraction. Transient peaks in total-, LDL- and HDL-
cholesterol occurred postprandially, but did not differ between dietary treatments (P40.05). There were no differential effects of
diet on postprandial free fatty acids, apo A, apo B, glucose, insulin, amylin or haemostatic clotting factors (P40.05).
Conclusions: In a group of healthy young men, replacement of 16% of total saturated fatty acids by mono- and
polyunsaturated fats within a dairy lipid did not induce postprandial changes in CVD risk that may be considered beneficial for
health.
Sponsorship: Fonterra, Wellington; New Zealand.
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Introduction
More than 20 years ago, Zilversmit (1979) suggested that

postprandial lipoprotein metabolism may play a significant

role in the process of atherogenesis through triacylglycerol-

rich lipoprotein (TRL) metabolism. While fasting levels of

TRL and cholesterol-rich lipoproteins can be significantly

modulated through dietary change, and the strategy of

altering dietary lipid quality has long been shown to be

successful in reducing cardiovascular (CVD) risk (Grundy,

1986; Mensink & Katan, 1989; Mata et al, 1992; Katan, 1997;

Willett, 1998; Poppitt et al, 2002), the relationship between

diet, transient postprandial changes in lipids and CVD risk is

not as well established (Patsch et al, 2000; Parks, 2001). There

is, however, a growing body of evidence that changes in

postprandial triacylglycerol (TAG) and high-density lipopro-

tein cholesterol (HDL-C) are associated with changes in CVD

risk (Havel, 1994, 1997a,b; Bergeron & Havel, 1997;
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Karpe, 1999; Berglund, 2002) and that modulation of

postprandial lipid profile is an important target for dietary

intervention.

Both direct and indirect mechanisms for the relationship

between postprandial TAG and CVD risk have been pro-

posed. Poor chylomicron clearance may lead to deposition of

lipid on the arterial wall (Hazzard & Bierman, 1976; Cortner

et al, 1987; Groot et al, 1991) or there may be reciprocal

crossing of cholesteryl esters (CE) and TAG between

lipoproteins, which can lead to the ‘atherogenic lipoprotein

phenotype’ (Miesenbock & Patsch, 1992). For example, CE

transferred to TRL may result in CE-enriched particles that

accumulate as part of atheromatous plaques, and TAG

transferred to low-density lipoprotein cholesterol

(LDL-C) and HDL-C may more readily undergo lipase

hydrolysis, which leads to reduction in lipoprotein size and

formation of a preponderance of small HDL and small, dense

LDL that are easily oxidised (de Graaf et al, 1993), toxic to

endothelial cells (Sattar et al, 1998) and atherogenic (Patsch

et al, 1992). Decreased postprandial HDL-C is also associated

with an increase in CVD risk (Gordon et al, 1977; Patsch et al,

1992), although decrease in HDL-C may be a direct

consequence of an increase in TRLs rather than indication

of an independent marker of risk (Patsch et al, 1984;

Miesenbock & Patsch, 1992; Muesing et al, 1995; Thomsen

et al, 1999).

By eating three meals a day, we are repeatedly exposed to

elevated levels of circulating lipoproteins and while there

are strong relationships between the total fat content

of the meal and the lipaemic response (Tall et al, 1982;

Cohen et al, 1988; Rifai et al, 1990; deBruin et al, 1991;

Dubois et al, 1994), there is little consensus as to the

differential effects of fat quality such as fatty acid composi-

tion on postprandial response (Zampelas et al, 1994; Muesing

et al, 1995; Higashi et al, 1997; Roche & Gibney, 1997, 2000;

Roche et al, 1998; Tholstrup et al, 1998; Thomsen et al, 1999;

Mekki et al, 2002). While there is also growing evidence that

haemostatic clotting factors, such as total Factor VII

coagulant activity (FVIIc), may be affected postprandially

by increasing fat load in the diet (Miller et al, 1991; Larsen

et al, 2000), there also remains little consensus as to the

differential effects of individual fatty acids (Miller, 1998;

Sanders et al, 2001).

A trial recently published from our laboratory has shown

that small changes in the fatty acid profile can help to lower

fasting total and LDL-C even in apparently healthy men

(Poppitt et al, 2002) and thereby potentially improve CVD

risk. In that trial, a modified butter fat, in which 16% of

saturates were replaced with mono (MUFA) and polyunsatu-

rates (PUFA), was fed over a 3-week period as part of a

healthy, moderate-fat diet. The aim of the current study was

to determine whether such moderate changes in the fatty

acid profile may also have protective effects on postprandial

outcomes related to CVD risk, including TRL and cholester-

ol-rich lipoproteins, haemostatic and other associated meta-

bolic parameters.

Methods
Subjects

A total of 18 lean (BMI 22.972.0 kg/m2), healthy, male

volunteers aged 19–33 y were recruited into this intervention

following screening to confirm normal clinical biochemistry

as assessed by lipid profile, liver function, thyroid function

(T4, TSH), plasma glucose and blood pressure (Table 1). None

had a current or previous history of treatment for significant

disease, nor were they taking medications for lipid, blood

pressure or metabolic disorders. All subjects completed both

arms of the intervention. There were no subjects who

withdrew or who were excluded for noncompliance. All

volunteer subjects provided written informed consent.

Ethics approval for this study was obtained from the

Auckland Ethics Committees, Auckland, New Zealand.

Protocol

This study was a double-blind, randomised crossover trial in

which participants were required to complete two treat-

ments each of 24 h duration, during which a control or a

modified dairy lipid was given as a high-fat bolus within a

breakfast meal. The breakfast meal comprised a sweet

blueberry muffin, a milk and sugar-free decaffinated hot

beverage and/or a glass of cold water. The fatty acid profiles

of the two butter fats are shown in Table 2. Participants were

randomised to treatment using stratification methods, such

that nine of the subjects were given modified and nine were

given control butter fat as their first treatment. They were

then all crossed over on to the remaining treatment regime.

Treatments were separated by a minimum 3-day washout

period. Subjects were confined within the human nutrition

facility at the University of Auckland throughout each 24-h

treatment. They arrived fasted at the nutrition unit at 0730

on day 1, an indwelling venous cannula was inserted and a

baseline blood sample was collected. At 0800, the butter fat

bolus was served. Further blood samples were then collected

at 1, 3, 6, 10 and 24 h after the breakfast meal. A fat exclusion

lunch containing 3.1 g dietary fat and comprising vegetarian

pasta, bread roll and orange juice was served immediately

Table 1 Subject characteristics at screening of the 18 male subjects
who completed both arms of the intervention

Characteristic Mean s.d.

Age (y) 23 4.2
Body weight (kg) 72.8 6.7
Body mass index (kg/m2) 22.9 2.0
Systolic blood pressure (mmHg) 123 10.5
Diastolic blood pressure (mmHg) 78 9.0
Waist (cm) 79.5 6.1
Fasting plasma glucose (mmol/l) 4.7 0.3
Total cholesterol (mmol/l) 4.3 0.8
LDL-C (mmol/l) 2.5 0.7
HDL-C (mmol/l) 1.4 0.4
Triacylglycerol (mmol/l) 0.8 0.3
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following the 6 h blood sample. A fat exclusion snack

containing 0.7 g dietary fat and comprising fruit cake and

apple juice was served mid-afternoon, 8 h postbreakfast. A fat

exclusion dinner containing 1.3 g dietary fat and comprising

vegetarian risotto, raspberry desert and a soft beverage was

served following the 10 h blood sample. These meals and

snacks were identical on both treatment arms and contained

an average of 5.1 g of dietary fat on each occasion. Subjects

slept at the unit that evening and a final blood sample was

collected fasted at 24 h.

Diet

The butter bolus given to each subject was calculated

individually and scaled to body size. Each individual was

given 5.3 g butter fat per megajoule intake, such that on a

10 MJ diet the butter fat bolus was 53 g. Table 3 shows the

composition of the blueberry muffin including the bolus of

butter fat. Subjects were kept in energy balance throughout

the day, calculated as 1.4 times predicted basal metabolic rate

(BMR), equivalent to a sedentary day. The average daily

energy requirement for the subjects was estimated to be

11.270.2 MJ/day, and was matched by intake. The average

butter fat intake was 59 g, equivalent to approximately 73 g

of dairy butter. The total average energy content of the test

breakfast was 3.5 MJ (high fat), lunch was 3.5 MJ (high CHO),

afternoon snack was 1.5 MJ (high CHO) and dinner was

2.4 MJ (high CHO). The energy and macronutrient content

of the diet was calculated using the dietary program

Foodworkst (Crop & Food Research, Palmerston North,

New Zealand). Subjects were required to consume only the

foods and beverages provided throughout the day. They had

access to no other food and were kept within the facility

throughout each arm of the trial.

Butter fat composition

The modified butter fat was manufactured for this trial using

bovine feeding methods in which lactating dairy cows were

fed a diet enriched with unsaturated fatty acids, in turn

protected from saturation in the rumen by an encapsulating

protein coat. Further details of the normal and modified

products have been provided in a previous publication

(Poppitt et al, 2002). This method resulted in a proportion

of the saturated fatty acids in the control butter being

replaced by unsaturated fatty acids (see Table 2).

Analytical methods

Blood samples from the 0, 1, 3, 6, 10 and 24 h venous

collections were analysed for circulating total cholesterol

(TC) , LDL-C, HDL-C, total TAG, TAG-poor (VLDL) chylomi-

cron, TAG-rich chylomicron, free fatty acids (FFA), apo A,

apo B, glucose, insulin, amylin, and the haemostatic clotting

factors fibrinogen and FVIIc activity. Serum TC, LDL-C, HDL-

C, total TAG, FFA, apo A, apo B and glucose concentrations

were measured in triplicate using a COBAS Mirat auto-

analyser (Hoffman-La Roche Ltd, Basel, Switzerland). A

three-step enzymatic colour method utilising cholesterol

esterase, cholesterol oxidase and peroxidase was used to

analyse serum TC in triplicate. Fasting and nonfasting LDL-C

was measured directly using an autoLDL-Ct Cholesterol

Reagent Set (Pointe Scientific, Inc.t). Step 1 used a detergent

to solubilise the chylomicron, HDL-C and VLDL-C fractions,

with subsequent removal of these fractions by cholesterol

esterase and cholesterol oxidase. Step 2 utilised another

detergent to solubilise the remaining LDL-C, and a chromo-

genic coupler produced colour formation that is propor-

tional to the amount of LDL-C present in the sample. A two-

step HDL-C precipitating reagent set (Pointe Scientific,

Inc.t) followed by enzymatic cholesterol analysis was used

for analyses of HDL-C. A triglyceride-GPO Reagent Sett

multistep, enzymatic, colour reaction method (Pointe Scien-

tific, Inc.t) was used to analyse total TAG in triplicate. TAG

fractions were prepared following the method of Thomsen

et al (1999). A measure of 4.2 ml EDTA plasma was overlaid

with 1 ml of HEPES-buffered saline (HBS) 10 mM, pH 7.4 and

centrifuged at 26 000� g at 41C for 30 min (Sorval Discovery

100S, Asheville USA, SW65 head). The lower, chylomicron-

poor fraction was aspirated by placing an HPLC probe into

the bottom of the tube and pumping away the fraction

Table 2 Composition of the control and modified butter fat, indicating
the major constituents of the fatty acid profile

Control butter Modified butter d

Total fat content (% w/w) 85.2 81.7 �3.5
Moisture (% w/w) 12.4 15.4 3.0
Total saturated fat (% fat) 70.5 54.4 �16.1

Lauric C12:0 3.8 2.7 �1.1
Myristic C14:0 12.0 8.3 �3.7
Palmitic C16:0 31.5 18.8 �12.7
Stearic C18:0 10.1 13.4 3.3

Total PUFA (% fat) 3.0 10.5 7.5
Linoleic C18:2 1.2 7.2 6.0
a-Linolenic C18:3 0.8 2.3 1.5

Total MUFA (% fat) 22.1 32.0 9.9
C18:1total 18.6 30.0 11.4
C18:1trans 4.3 4.7 0.4

Cholesterol mg/100 g butter 222.0 191.0 �31.0

Table 3 Average composition of the fat-loaded breakfast muffin test
meal

Control butter fat muffin Modified butter fat muffin

Nutrient composition Mean s.d. Mean s.d.

Energy (kJ) 3130 193 3140 193
Protein (% en) 4.9 0.5 4.9 0.5
Carbohydrate (% en) 23.2 1.7 23.1 1.7
Fat (% en) 70.8 4.9 70.9 4.9
Fat (g) 59.1 3.7 59.5 3.9
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(peristaltic pump, Pharmacia P-1, NJ, USA) at a rate of 1 ml/

min. The chylomicron-rich layer was washed off the tube

walls into the body of the tube using 1 ml of HBS. This was

then transferred to a 1.5 ml Eppendorf tube (Hamburg,

Germany) and ultracentifuged at 12 000� g for 20 min at

41C. The bottom layer was again aspirated. All chylomicrons

were washed off the aspiration needle and tube wall using

1 ml of HBS and mixed well. Both fractions were then frozen

at �801C for later analysis. The recovery of chylomicron-rich

and chylomicron-poor TAG was calculated as a percentage of

the recovery of total TAG to assess the accuracy of the

ultracentrifugation method. An enzymatic colorimetric

method (Rochet) based on the method of Shimizu et al

(1980) was used to analyse FFA. Apolipoprotein A-1 Reagent

Sett and apolipoprotein B Reagent Sett immunoturbidi-

metric analysis methods (Pointe Scientific, Inc.t) were used

to analyse apo A and apo B. The serum glucose concentration

was measured enzymatically using the Glucose Hexokinase

Reagent Sett method (Pointe Scientific, Inc.t). The serum

insulin concentration was directly measured in duplicate

using a double antibody radioimmunoassay (RIA) kit

method (Peninsula Laboratories, Inc.t, Belmont, USA). The

serum amylin concentration was directly measured in

duplicate using a solvent extraction kit method (Peninsula

Laboratories, Inc.t, Belmont, USA) and subsequent RIA

measurement of the peptide concentration. Haemostatic

clotting FVIIc and fibrinogen concentrations were analysed

as single measures using a Behring Coagulation Systemt

batch analyser (PA, USA).

Statistical analyses

Body weight and metabolic outcomes were analysed using

linear mixed model ANOVA (SAS: PROC MIXED, SAS version

8.0, SAS Institute Inc., Cary, NC, USA, 2001). Split-plot-in-

time repeated measure ANOVA tested within- and between-

diet interactions over time periods of 6 and 24 h. Treatment

groups, ID, study day and run order effects were included in

the procedure. Total TAG, TAG-rich and TAG-poor chylomi-

cron were also analysed for within- and between-diet effects

with time, subject and run order interactions at 3 h (peak

height), and as the area under the curve (AUC) between 0

and 6 h. In all measures, when there was no differential effect

of fat quality, the two treatments were combined and the

quantitative effects of the dietary lipid were analysed over

time. All biochemical assays were analysed in triplicate and

presented as a mean7s.e.m. Statistical significance was

based on 95% limits (Po0.05).

Results
The feeding regimen carried out in the lactating dairy cows

reduced saturated fatty acids by 16% and increased MUFA

and PUFA by 10 and 7.5%, respectively, in the modified

butter fat product (see Table 2). The major reductions in

saturates were in palmitic (C16:0, �12.7%) and myristic

(C14:0, �3.7%) acids. These were replaced by oleic (C18:1,

þ11.4%), linoleic (C18:2, þ6.0%) and linolenic acids

(C18:3, þ1.5%). There was no significant increase in the

content of trans fats, which was between 4 and 5% of total fat

in both products. The cholesterol component of the butter

decreased by 31 mg/100 g butter fat in the modified product,

which represented an average decrease of 18 mg cholesterol

in the butter bolus as fed to the subjects at breakfast.

When analysed independent of dietary treatment, total

TAG increased postprandially in response to the high-fat test

breakfasts (time0–6 h, Po0.001; Figure 1). There were no

significant between-treatment effects (diet� time, P40.05)

when analysed over 6, 24 h or as the AUC over 6 h (AUC0–6 h),

but the maximal 3 h peak height was significantly greater on

modified butter fat treatment than on control treatment

(diet, Po0.05). When analysed independent of dietary

Figure 1 Postprandial changes in total, chylomicron-rich and
chylomicron-poor TAG fractions following the consumption of a
high-fat breakfast containing a control (K) or modified (J) dairy-
derived lipid, in 18 lean healthy men. Statistical significance shown
for between-treatment effects (ANOVA), *Po0.05. Mean7s.e.m.
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treatment, chylomicron-rich TAG (upper panel) also in-

creased postprandially (time0–6 h, Po0.001). The maximal 3 h

peak height mimicked the pattern of total TAG, but the

difference was not significant (diet, P40.05). There were no

significant between-treatment effects of diet (diet� time,

P40.05) when analysed over 6, 24 h or as AUC0–6 h.

Chylomicron-poor TAG (lower panel) comprised the major

portion of total TAG at baseline on both treatment days.

When analysed independent of dietary treatment, there was

an increase postprandially (time0–6 h, Po0.01), but no

differential effect of treatment at the 3 h peak (diet,

P40.05). There were no significant between-treatment

effects of diet (diet� time, P40.05) when analysed over 6,

24 h or as AUC0–6 h. During the analytical process, the

average recovery of chylomicron-rich and chylomicron-poor

TAG fractions across both treatments and all time periods

was 89712 (s.d.)%. A total of 197 individual blood samples

were analysed from 216 time points on the two treatment

arms (19 missing data points). Recovery of o80% was

obtained in 16 samples and 4110% in one sample only,

indicating that the method used was reasonably informative.

Changes in the circulating levels of cholesterol-rich

lipoproteins following the two separate test meals are shown

in Figure 2. There was little differential response of cholesterol

Figure 2 Postprandial changes in total, LDL and HDL cholesterol following the consumption of a high-fat breakfast containing a control (K) or
modified (J) dairy-derived lipid. Changes from baseline shown in the RH panels. Mean7s.e.m.
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fractions to the two fat challenges and no evidence of

significant between-treatment effects in either TC, LDL-C or

HDL-C when analysed over the immediate postprandial 6 h

(diet� time, P40.05) or the entire 24-h period (diet� time,

P40.05). When analysed independent of treatment over the

6-h postprandial period, there was a significant increase in TC

and HDL-C and a significant decrease in LDL-C (time0–6 h,

Po0.001), a consequence of lipaemia per se.

There were no significant between-treatment effects on

circulating FFA, apo A, apo B, glucose or insulin when

analysed over either 6 or 24 h (Figure 3; diet� time, P40.05).

Serum amylin tended to be higher during modified treat-

ment when analysed over 24-h (diet� time, P¼0.052).

Temporal changes in FFA were driven by meal pattern, a

rapidly decrease post-fat bolus followed by a significant rise

prior to the lunch meal (time0–6 h, Po0.001). When analysed

independent of treatment, there was little effect of the fat

challenge on apo A (time24 h, P40.05), while apo B decreased

at 6 and 10 h and increased during the overnight fast

(time24 h, Po0.05). Glucose and insulin responded in an

entirely predictable manner, increasing rapidly postpran-

dially. Amylin, cosecreted with insulin, also altered in

response to meal pattern increasing at 1 and 10 h (time24 h,

Po0.05).

There were no differential effects of dietary treatment on

the activity of FVIIc or fibrinogen when analysed over the

immediate 6 h postprandial period or over the 24 h test

(diet� time, P40.05; Figure 4). When analysed independent

of treatment, the high-fat bolus produced a transient drop in

FVIIc over 6 h (time0–6 h, Po0.01), but no effect on plasma

fibrinogen (time0–6 h, P40.05).

Discussion
While there is no doubt that there is a strong positive

relationship between the total fat content of a meal and the

magnitude of postprandial lipaemia (Tall et al, 1982; Cohen

et al, 1988; Rifai et al, 1990; deBruin et al, 1991; Dubois et al,

1994), there remains little firm consensus as to the

differential effect of fatty acid classes or individual fatty

acids on postprandial markers of CVD risk. Trials have shown

both unsaturated (Harris et al, 1988, 1990; Weintraub et al,

1988; Zampelas et al, 1994; Tholstrup et al, 1998; Thomsen

et al, 1999) and saturated fats (Edelin et al, 1968; Schlierf et al,

1977; Avarim et al, 1986; Muesing et al, 1995; Higashi et al,

1997; Mekki et al, 2002) to preferentially decrease or have no

differential effect (Roche & Gibney, 1997; Roche et al, 1998)

on postprandial TAG. When unsaturated fats are considered

in more detail, there is emerging evidence that MUFA may

have no differential effect relative to saturates (Roche &

Gibney, 1997; Roche et al, 1998), while PUFA may reduce

postprandial TAG relative to SFA (Harris et al, 1988, 1990;

Weintraub et al, 1988; Zampelas et al, 1994; Roche & Gibney,

2000).

When cholesterol-rich lipoproteins are measured, saturates

may decrease (Thomsen et al, 1999) or have no differential

effect (Avarim et al, 1986; Muesing et al, 1995; Higashi et al,

1997) on postprandial HDL-C, despite changes in triglycer-

idaemia. Postprandial changes in TC and LDL-C remain

equally poorly defined (Avarim et al, 1986; Daumerie et al,

1992; Muesing et al, 1995; Tholstrup et al, 1998). Postpran-

dial TRL and HDL-C are of particular importance since there

are established relationships between these circulating

lipoproteins and consequent risk of CVD (Patsch et al,

Figure 3 Postprandial changes in FFA, apo A and apo B (top panel), glucose, insulin and amylin (bottom panel) following the consumption of a
high-fat breakfast containing a control (K) or modified (J) dairy-derived lipid. Mean7s.e.m.
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1992; Havel, 1994, 1997a,b; Bergeron and Havel, 1997;

Karpe, 1999) although it has been suggested that the

negative relationship with HDL-C may be a direct result of

lipaemia rather than as an independent risk factor per se

(Miesenbock & Patsch, 1992; Muesing et al, 1995).

In this trial, we showed that the modified lipid, with a

high content of unsaturated fatty acids, preferentially

increased the total circulating TAG in the 3 h immediately

following ingestion of the bolus. There was, however, no

evidence of differential effects of fat quality on cholesterol-

rich lipoprotein fractions, nor on other associated markers of

CVD risk. The response to the quantity of fat eaten was

relatively predictable in all measured outcomes. Both high-

fat breakfasts caused total TAG to increase to a peak at

around 3 h postprandially. This was due predominantly to an

increase in chylomicron-rich TAG, although there was also a

small increase in chylomicron-poor TAG, which may suggest

that some of this was of intestinal rather than hepatic origin.

The decline 10 h after the fat challenge, which drove TAG

below baseline fasting levels, has previously been reported

and may be due to meal-induced changes in the activity of

the lipoprotein lipase system (Groot & Scheek, 1984). HDL-C

increased several hours after the serum TAG peak, at 6 h post-

meal. This delayed rise with respect to TAG has also

previously been shown in a number of trials following

high-fat feeding, accompanied by a decrease in HDL density

(Havel et al, 1973; Groot & Scheek, 1984; Muesing et al, 1995)

and an increase in HDL constituents predominantly through

increases in the HDL3 fraction (Tall et al, 1982; Groot &

Scheek, 1984).

There are a number of factors that may be responsible for

the variability in response between the published trials,

including the subject groups studied, the effects of prior diet

(Harris et al, 1988), the nature of the lipid emulsion or mixed

meal (Mekki et al, 2002) and the detailed fatty acid profile of

the test bolus. Butter fat is one of the most complex dietary

lipids both in terms of fatty acid (predominantly palmitic,

myristic, stearic, oleic acids) and TAG components and its

physico-chemistry. In this trial, we modified the dairy fat

mainly through replacement of palmitic and myristic acids

with oleic, linoleic and a small fraction of a-linolenic acids.

Despite the large fat bolus of almost 60 g given to the men in

this trial, the absolute change in dietary fatty acids was

relatively small. Total saturates were decreased by approxi-

mately 10 g and were replaced by an average of 6 and 4 g

MUFA and PUFA, respectively. This moderate change, which

we have previously shown to reduce circulating levels of

fasting TC and LDL-C significantly in long-term trials

(Poppitt et al, 2002), had a modest effect on TAG alone. A

number (Edelin et al, 1968; Schlierf et al, 1977; Muesing et al,

1995; Higashi et al, 1997; Tholstrup et al, 1998; Mekki et al,

2002), although certainly not all (Harris et al, 1988, 1990;

Weintraub et al, 1988; Zampelas et al, 1994; Roche et al, 1998;

Tholstrup et al, 1998; Thomsen et al, 1999) previous trials

have shown that unsaturated fats tend to produce a greater

TAG response than saturates. This has been attributed to a

range of factors including: (i) the physical form of the lipid

droplet within the gastric emulsion, whereby saturated fats

are less easily lipolysed in the gut; (ii) differential rates of

absorption of the lipolysis products; and (iii) differential

rates of catabolism of chylomicron remnants (Apgar et al,

1987; Schrijver et al, 1991; Muesing et al, 1995; Phan et al,

1999).

Less work has been carried out in the area of postprandial

haemostatic response to high-fat feeding. There is evidence

to suggest that the total dietary fat may increase postprandial

FVIIc transiently and hence increase CVD risk (Miller et al,

1991; Salomaa et al, 1993; Oakley et al, 1998; Hunter et al,

2001), but conflicting evidence of differential effects of fatty

acids. Five trials have failed to show a differential effect of

dietary fat on FVIIc when comparing SFA, MUFA and PUFA

(Larsen et al, 1997; Hunter et al, 2001), SFA and MUFA

(Oakley et al, 1998), SFA and PUFA (Miller et al, 1991), and

MUFA and PUFA (Larsen et al, 1999), while other trials

showed that stearic acid may increase and PUFA may

decrease postprandial FVIIc (Miller, 1989, 1998; Sanders

Figure 4 Postprandial changes in haemostasis following the
consumption of a high-fat breakfast containing a control (K) or
modified (J) dairy-derived lipid. Mean7s.e.m.
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et al, 2001). Our trial showed no evidence of either an

increase in FVIIc following the large fat bolus, instead there

was a transient decrease following the bolus of fat, or a

differential effect of fatty acids. There is no previous evidence

of either total fat or fatty acid composition having an effect

on circulating levels of fibrinogen (Freese & Mutanen, 1995)

and our trial also failed to show any significant changes.

In conclusion, in response to an acute bolus of lipid given

at breakfast, there were rapid and transient increases in

glucose, insulin and amylin and decreases in FFA during the

first hour. There was a gradual increase in TRL, TC and HDL-

C and a decrease in LDL-C over 6 h and little change in the

markers of haemostatic function, FVIIc and fibrinogen.

Previous trials have shown TAG, HDL-C and FVIIc to be

important postprandial markers of CVD risk, which have the

potential to be modified through dietary change. Changes in

the composition of the fatty acids within the lipid load

significantly affected TAG-rich lipoproteins only, and there

were no differential effects of the two test lipids on other

postprandial markers of CVD risk that were measured.
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